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Abstract

A multistage motion estimation scheme is proposed.
The scheme extracts video characteristics by first
performing an online video analysis separately for
Joreground and background regions. Motion parameters
are extracted and passed fto the next stage. The next stage
includes a mathematical model for the block distortion
surface (BDS) that enables the algorithm to accordingly
adjust its search technique. The search is performed on a
precise search area adaptive to the statistical property of
the motion vector prediction error. Due to its self-tuning
property, not only does the proposed scheme adapt to
scenes by yielding better visual quality but it also yields a
lewer computational complexity, compared with the other
predictive motion estimation algorithms on standard
benchmark sequences.

1 Introduction

In the last two decades, several fast motion
estimation (ME} algorithms have been proposed as
substitutions for the exhaustive search algorithm,
Examples include TSS [3], NTSS [4], DS (7], etc.
Recently, ME algorithms based on the motion vector (MV)
prediction techniques and flexible search patterns are
proposed, such as MVFAST [2] and AMSED [1]. These
algorithms enhance the search speeds while maintaining a
close visual quality compared with the exhaustive search.
However, the performance of a great number of
previcusly introduced algorithms highly depends on the
characteristics of the video contents.

In this paper, we introduce a ME scheme for a new
paradigm of video compression that we call content
adaptive video compression. The notion of content
adaptive is that the encoder is aware of the content (e.g.,
objectivity and scene complexity) that it is encoding and
the context in which it is being used (e.g., a certain
performance measure). The aim is to provide adaptability
and self-adjustment to the environment that the
compression is being used for. The proposed scheme is
called content adaptive search technique (CAST).

The paper is organized as follows. Sectien 2
introduces the proposed scheme. Section 3 presents the

performance evaluation results. Concluding remarks are
provided in section 4.

2 Content Adaptive Search Technique

Motion estimation is a combination of several
techniques including MV prediction, search range, search
pattern and termination criterion decision, etc. The
performance of these techniques is highly related to the
video contents. Therefore, an “intelligent” process that
adapts to the video contents is required to maximize the
performance. The proposed scheme analyzes and extracts
the motion characteristics from the video contents and
self-adjusts to adapt to the video contents. Shown in Fig.
1 is the block diagram of the proposed scheme.

Video scene analysis] ¢ | MYV Field Prediction
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Fig. 1: The block diagram for CAST

CAST consists of three stages: MV field (MVF)
prediction, video scene analysis, and motion estimation.
They are described as follows:

Stage 1: MVF is predicted from previous frame using
the proposed weighted mean inertia motion
prediction technique.

Y

Current frame Motion vector field

Stage 2: Blocks are clustered into regions. Motion
characteristics parameters of each region are
extracted and passed to the next stage.

Stage 3: A ME algorithm combines various techniques

that can be fine tuned by the motion parameters
and the proposed BDS model,

2.1  Motion vector field prediction

MVF can be predicted based on the spatial/temporal
correlation between MVs. [1] [5] proposed Inertia MV
prediction method to predict the current motion by
exploiting the motion inertia property.

Based on [1], we proposed an improved method to
increase the accuracy and smoothness of the predicted
MVF (PMVF). We call it Weighted Mean Inertia (WMI)
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MYV prediction. Below is the description of WMI,

Let MV denote the motion vector of a block. If the
motion remains constantly, the block in the next frame
will have a displacement —-MV. The displaced block
overlaps with one or more gridded blocks. Let B, denote
a block i in frame ¢~/ and D;,; denote the displaced 5,,;.
The comresponding metion vector and distortion
(measured by the sum of absolute difference, abbr. SAD)
are MV, and S4D;,,. The overlap of D,;,; and B;, is
denoted by §;;. The predicted MV and distortion of block j
in frame ¢, PMV;, and PSAD;, , are given below:

PMY,, = ZW.r~lSIJ/Z Ses 8y
PSAD,, =} SAD; .S, /Z S, )

Table 1 shows the average correlation coefficients
(ACC) between the PMVF and the true MVF . Compared
with [1], WMI improves the prediction accuracy.

2.2 Video Scene Analysis

Motions in a frame may vary, but motions in a local
region generally show similar properties. Therefore, we
cluster the blocks into three regions, namely foreground,
background and uncovered background. Uncovered
background is a region that was covered by an object in
the previous frame but is uncovered in the current frame
due to the object movement. Usually, in natural video
contents, motions in different regions have different
characteristics. By exiracting regions, we are able to use
different techniques on different regions to achieve higher
performance in both speed and quality,

2.2.1 Region extraction

The background MVF can be modeled by 6 affine
transform parameters. Given the PMVF, we compute the
background affine parameters a;~a4 using the approach

introduced by [6]. The reconstructed background MVF is
obtained by (3):

(32 2

where (x,») is the coordination of the block. £ denotes the
difference of PMVF and reconstructed background MVF:

E =|PMV (x,3)— MV (%, )| Q)]
where PMV(x,y) is the predicted MV at (x,y). A threshold
T is set to be the standard deviation of E. For each block
By, if ZS,-,, is less than a half of the block size, we mark

it as uncovered background. Otherwise, the type is
determined as follows:

_ | foreground  E(x,y)>T

block type= {background E(x,)<T

(3}

222

We define the following parameters to represent the
regional motion characieristics. Motion velocity (M,.;)
indicates the rapidity of motions in a certain regicn.

Motion parameters

Motion complexity (M.} indicates the degree of
disorder of the motions. The definitions of M,.; and M.,y
in background and foreground are below:

Mo =%( ! M(I‘yﬂ) Mome = %( » ,;,m,_,a () WF) (6)
i e
1 1 _I
Mo = F‘X'MEW(]MV(x,yH) Moo = F‘.‘.yJ‘EwquV(x, )= M )

where N’ and N” are the numbers of background and
foreground blocks. #¥, and MV, are the average MVs of
background and foreground respectively.
223
It is essential to handle scene changes, since they wiil
lead to false estimation of motion parameters. Denote the
average pixel difference between previous frame and
current frame as D,;. We dctect the scene change by
comparing [, with a predetermined threshold T

Scene Change Detection and Handling

0

{scene change ocours if D, >T,

no scene change  if D, ST,

Scene change detection is only performed at P frame.
Once a scene change is detected, all blocks in that frame
will be INTRA coded. The PMVF of the next P frame
will be set to zeros.

2.3 Motion Estimation
23.t  Modeling the block distortion surface (BDS)

BDS is a scalar field that consists of distortion values
of all secarch points, A mathematical model for BDS is
proposed here. We modeled the BDS as a function of
motion, texture complexity and the distance away from
the global minimum position {GSP).

Let the center of BDS be the GSP. The distortion
value of a search point can be described by D(r) where r
is the chess-board distance from G. We observed that Dyr)
is related to the scene texture complexity. Scene texture
complexity can be represented by the minimum distortion
D). Tt is because when a scene contains complex
textures, it is less possible to find a match for a block with
similar texture structure. Therefore, the value of Df0) is
large if the texture is complex, and vice versa.

By evaluating the relation between (D(r) - DO)F /Doy
and r, we abserved that (P()~DO)F/DOF is close linearly

related to r, as shown in Fig. 2. The solid lines in Fig. 2
are the linear regression fitting curves of the measured
data. We formulated the relation as
(D(r}- DO} /DWOY =g+, where £ is a function of M,

Moreover, experiment analysis shows that g(M,.;) can
be modeled by a rational quadric polynomial,
e(M =1 a+bMyteM,), where a, b and ¢ are
constants. Fig. 3 shows the measured data and the
theoretical curve of g(M,,). The deduction can be
summarized as the following equation:

r=[%o—q (a+bM  +cM %) &)
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Once we obtain D(r), M, and D(@), we are able to
estimate the distance r. D(0) is approximated by PSAD
which is obtained by (2).

2.3.2  Tight Search Area

Our further investigation shows that the distribution
of the MV prediction error is highly related to the motion
characteristics. We found that in a scene with large A,
the prediction error has a diverse distribution, and vice
versa. Therefore, we propose an adaptive tight search area.
The region with a lower M., employs a tighter search
area. Otherwise, a looser search area is applied.

We categorize M., into three levels, i.c., low,
median and high, Extensive experiments have been done
to find a proper search area radius for each level, A target
probability pip. is set such that the accumulative
probability of the prediction errors within the radius is no
less than prage. as shown in (9). p; is the probability of the
MYV prediction error i. In our experiment, piy., is set to
99%.

radits
Prage S 2P )
=0

When M., level is high, we do not restrict the
search area in order to increase the search accuracy. The
tight search area is a diamond shape, covering the search
points within the radius determined by (10).

3 M e < 0.1
radius = 7 01gM,, <06 (10)
unrestricted M mp 206

2.3.3  Initial search point (ISP)

The proposed scheme maintains a predictor set
(PSET). Elements of PSET arc e¢valuated first. The
element with the minimum SAD is the initial MV, ISP is
the position pointed by the initial MV. The elements are
selected from the set { MV , MV , MViyprigns , PMV,,
PMV,p , PMV,i . MVpeun } depending on the motien
parameters, where MV , MV, and MV, s are MVs
from the left, up and up-right coded block of current
frame; PMV.,, PMV . , PMV ;o are MVs from collocated,
lower and right block of PMVF, MV,.., is the mean of
MI/!'I.:ﬁr MVup» MVup-righ!-

Define the region of support (ROS) as the left, upper
and upper-right block of the coding block. Local motion
activity (LMA) is defined as the maximum chess-board
distance of MV, MV, and MV e It represents the
motion consistence in a small local area.

The elements of PSET are sclected as follows:

Uncovered background region:

PSET is composed of the MVs in ROS and MVs of
the lower and right blocks in PMVF, i.c. PSET = { MV,
MVﬂps MVuprighta PMVIom PMVrig.hr}'
Other regions:

If all the blocks of ROS are in the same region:
1) EPMV,, equals to MV, .on,

Foreground region: PSET={ PMV,, }
Background region: If all MVs in ROS are identical
and MV, is small, the motion of current block is
slow and stable. We skip the search and use PMV as
the current MV. Otherwise PSET={ PMV,, }

2} Or else, if the LMA<S, PSET={ PMV,,, MV, ..},
otherwise, PSET={ PMV ., MV, MV, MV iy it}

If at less one of the blocks of ROS is from different region:

PSET:{ PMch MI/n'th MVups MVup-righl}’

234 Exponential Expand Search (E-search)

We propose an exponential expand search which
starts from the ISP and is bounded within the tight search
area. Two search patterns, cross pattemn and exponential
expand pattern, are used.

Cross pattern is used to determine the gradient
descent direction in BDS and verify the minimum
position. A cross (+) shape is chosen because of the fact
that most motions in real-world video are along horizontal
or vertical direction due to camera panning and tilting. A
cross pattern consists of 4 check points, (5,0), (0,-5), (-
5,0, (0,5). 8 is adjustable. The initial § is obtained by:

I r<é
s={ 75 an

Exponential expand pattern aims at fast approaching
the global minimum along the gradient decent direction
by increasing the step size exponentially.

The search procedure is described as follows:

Step 1: Mark P as ISP,

Step 2: Evaluate the cross pattern centered at P. The point
with minimum SAD is marked as the current best
point (CBP). If P=CBP, go 1o step 3. Otherwise,
20 to step 4.

Step 3; If S=/, stop. Otherwise, § = /, go to step 2.

Step 4: Switch to exponential expand pattern: Let V=
CBP-P. Compute expanded search point
ESP=2V+P. If ESP has the minimum SAD, mark
ESP as the new CBP, repeat step 4. Otherwise,
mark the CBP as P and go to step 2.

3 Performance Evaluation

This section presents the performance cornparison
between CAST and two ME algonthms based on MV
prediction technique, MVFAST and AMSED. Microsoft
MPEG-4 VM encoder has been used for the simulation.
17 most popular test sequences are included, from low
motion to fast motion.

Table 2 is the average visual quality and speed
comparisons. Visual quality is measured by the increase
of peak signal to noise ratio (PSNR gain) compared with
MVFAST. Speed up is measured by the ratio of number of
search point (NSP) compared with MVFAST. As shown
in table 2, CAST generally achieves better visual qualities,
and outperforms both MVFAST and AMSED in terms of
speed-up.

Fig. 5 illustrates per frame comparison of the PSNR
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and NSP at scene change occasion. Comparing the visual
quality, it can be observed that CAST adapts to the new
scene much faster and more linearly than the other two
algorithms, Concerning the computational complexity,
CAST adapts to the new scene without a burst of NSP at
the scene change point.

4 Conclusions

We have proposed a multistage content adaptive
motion estimation scheme. The proposed scheme
outscores the MVFAST and AMSED in terms of visual
quality and computational cost, while showing a better
adaptability to various types of scenes and abrupt scene
change occasions. The proposed scheme has the best
overall performance among the compared algorithms after
considering the overhead introduced by the video analysis
process. Simplified realization of the proposed scheme is
another goal in further study.
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Table 1: ACC between the PMVF and the true MVF

Frame WMI Inertia
X Y X Y
0 0.668 | 0.314 | 0534 | 0.320
1 0.634 | 0320 | 0.601 [ 0.287
2 0.448 | 0.262 | 0429 [ 0223
Table 2; Average speed up and PSNR pains.
Speed Up PSNR Gain
CIF_|QCIF [CCIR| CIF [ QCIF | CCIR
MVFAST | 1.00 | 1.00 | 1.00 [ 0 0
AMSED | 144 | 1.44 | 1.37 | -0.024 | -0.014 [ +0.070
CAST 3.05 | 3.83 | 2.23 | +0.025 | +0.011 | +0.046
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Fig. 3: The measured data and the theoretical curve of
function g(M,,.). (@=0.013, b=0.1, ¢ = 0.081)
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Fig. 4: weighted mean inertia
motion vector prediction
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Fig. 5: Comparison on Scene change: Hall Monitor concatenated with Fereman.
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